Core Level Spectroscopies

F. J. Himpsel, Univ. Wisconsin Madison

Lecture I: Basics

- 1. Types of core level spectroscopies
- 2. Spectral ranges, cross sections, widths, probing depths
- 3. Chemical resolution vs. sensitivity to dilute species
- 4. Working with synchrotron radiation
- 5. Data analysis via reference spectra and theory
- 6. Spectroscopic microscopy, holography, ptychography

What Can Core Levels Do for you?

Spectroscopies based on core levels are element- and bond-specific. They are particularly useful for revealing the chemical environment of a specific atom (Nobel Prize in Physics 1981 to Kai Siegbahn).

Their interpretation is fairly straightforward, making it possible to sort out complex surfaces and interfaces.

X-ray photoelectron and absorption spectroscopy are widespread diagnostic techniques in academic and industrial research.

Example of the Chemical Sensitivity from Siegbahn's Group

This molecule contains 4 carbon atoms in different chemical environments. They are easily separated by their C1s core level binding energies. The shifts are associated with the charge transfer between each C atom and its ligands.

J. Electron. Spectrosc. Relat. Phenom. 2, 405 (1974)

Outgoing Particle

	Photon	Electron	Atom/Ion	
Photon	Absorption (XAS) Emission (XES) RIXS (X-rays out) XEOL (Visible out)	XAS Photoelectron Spectroscopy (XPS) Auger Spectroscopy	XAS Photon-Stimulated Desorption (PSD)	
Electron	Cathodoluminescence	Electron Energy Loss Spectroscopy (EELS) Appearance Potential Spectroscopy (APS)	Electron-Stimulated Desorption (ESD)	
Atom/Ion				

Incoming Particle

Photoelectron Spectroscopy (XPS, ESCA)

- Determines the binding energy of a core level by ionizing it
- Provides the energy of the core level
- Involves just a single quasiparticle, the core hole (1 quasiparticle)

X-ray Absorption Spectroscopy (XAS, NEXAFS, XANES)

- Probes empty valence states by populating them from a core level
- Element sensitive, measures states located at a specific atom
- Need to consider electron-hole interaction (2 quasiparticles)

XPS versus XAS: Overview Spectra

XPS analyzes a core level, while XAS analyzes empty valence states.

Focus on individual peaks in XPS and individual edges in XAS.

⁽Anders Nilsson)

- Same process as X-ray absorption spectroscopy, with a virtual photon emitted by a passing electron (not shown)
- Same dipole transitions in forward scattering, but extra multipole transitions with finite momentum transfer

X-ray Emission Spectroscopy

- Starts with a core hole (produced by absorption or EELS)
- A valence electron falls into the core hole emitting X-rays
- The end result is a valence hole. Thereby one probes an "occupied" valence state near a specific atom

Resonant Inelastic X-ray Scattering (RIXS, X-ray Raman)

- Combines core level absorption and emission coherently
- The end result is the creation of a valence electron-hole pair
- Becomes element-specific by involving a core level resonance

- Starts with a core hole (produced by XAS or EELS)
- Ends with 2 valence holes plus an Auger electron
- Convolutes the density-of-states of two "occupied states"

- Starts with a high-energy electron
- Ends with 2 valence electrons plus a core hole (detected by its decay)
- Convolutes the density-of-states of two "empty states"

Matrix element: $M_{fi} = \langle \psi_{final} | H_{int} | \psi_{initial} \rangle$

Fermi's Golden Rule:

Cross section = $|\mathbf{M}_{fi}|^2$ averaged over initial states and summed over final states

Spectral Ranges

Chemical Selectivity in Core Level Spectroscopy

List of core level binding energies: http://xdb.lbl.gov/Section1/Table_1-1.pdf Binding energies and widths of the sharpest core levels are listed below (in eV). These are: n l = 1s, 2p, 3d, 4f (with increasing atomic number Z).

Journal of Physical and Chemical Reference Data 8, 329 (1979)

Branching Ratio between Fluorescence and Auger Decay of Core Holes

K Shell			L ₂ Subshell				
Z	ωκ	aK	Z	ω_2	a ₂	f _{2,3}	
3	9.0 E-5	1.000	22	1.1 E-3 ^b	0.75 ^b	0.25 ^b	
4	3.3 E-4	1.000	23	1.8 E-3 ^b	0.71 ^b	0.29 ^b	
5	7.0 E-4	1.000	24	2.3 E-3 ^b	0.65 ^b	0.35 ^b	
6	1.4 E-3	0.999	25	3.1 E-3 ^b	0.61 ^b	0.39 ^b	
7	3.1 E-3	0.997	26	3.6 E 3	0.58	0.42	
8	5.8 E-3	0.994	27	4.4 E-3	0.57	0.43	
9	9.2 E-3	0.991	28	5.1 E-3	0.54	0.45	
10	0.016	0.984	29	5.7 E-3	0.52	0.47	
11	0.021	0.979	30	9.5 E-3	0.75	0.24	
12	0.028	0.972			$\displaystyle $		
13	0.036	0.964		X-rays	Auger		
]4	0.048	0.952	Light elements:				
15	0.061	0.939	Auger decay dominates.				
	X-rays	Auger	• Little photon emission (~10-3)				

Table 1. Fluorescence, Auger and Coster-Kronig yields for light atoms in condensed matter.^a (9.0 E-5 \equiv 9.0 \times 10⁻⁵).

• Little photon emission (≈10⁻³).

Cross Sections for Producing Core Holes with Photons

Atomic Data and Nuclear Data Tables 32, 1 (1985)

Choosing a Suitable Core Level

For XPS and XAS:

There is a trade-off between chemical selectivity and sensitivity For selectivity: Shallow core level, Low Z, electron detection For sensitivity: Deep core level, High Z, photon detection

For XAS:

The absorption cross section near threshold is suppressed by the centrifugal barrier with increasing angular momentum (see previous slide). Use *s*- or *p*-levels (K- or $L_{2,3}$ -edges).

Sensitivity vs. Chemical Selectivity for Metalloproteins

Need high sensitivity (highly dilute, prone to radiation damage)

Cytochrome c peroxidase (293 amino acids) Fe K edge with photon detection Cytochrome c (104 amino acids) Fe L edge with electron detection

J. Synchrotron Rad. **19**, 875 (2012)

J. Chem. Phys. 131, 194701 (2009)

Dipole Selection Rules

 $l \rightarrow l \pm 1$, with $l \rightarrow l \pm 1$ dominant: $s \rightarrow p$, $p \rightarrow d \pm s$, $d \rightarrow f \pm p$

Probing Depth of Photons

LBL database: http://henke.lbl.gov/optical_constants/atten2.html

Probing Depths of Various Particles

Decay Processes after X-Ray Absorption

Vary the Probing Depth in XAS by Detecting Electrons + Photons

Polycrystalline diamond films as inert electrodes in photovoltaics and catalysis

Spectra taken simultaneously with two detectors.

J. Phys. Chem C 116, 13877 (2012)

Probing Depth of Electrons

NIST database: https://www.nist.gov/srd/nist-standard-reference-database-71

Vary the Probing Depth in XPS by Changing the Photon Energy

The Si/SiO₂ interface: the key to Si technology (see Lecture II). The intermediate oxidation states exist only at the interface. They disproportionate into Si and SiO₂ in the bulk.

Orbital Orientation from the Polarization Dependence

For $1s \rightarrow 2p$ transitions in XAS:

cos² θ dipole pattern, with a maximum when the polarization vector E is parallel to the 2*p* orbital. Opposite behavior of π^* and σ^* orbitals.

Rotate the sample instead of the synchrotron or use special undulator.

Want a Tunable, Polarized Source of X-rays

Advanced Light Source (ALS) at Berkeley

Swiss Light Source

Synchrotron light sources have captured the interest of architects

Shanghai Light Source

Generating Synchrotron Radiation

Fig. 1 Schematic of the three approaches used for synchrotron light generation. Bending magnet light is available at all sources. Wigglers or undulators, which are periodic magnet structures installed in straight sections, provide much enhanced flux and brightness. (Figure courtesy of ALS, LBNL)

Producing Monochromatic Synchrotron Radiation

Diffraction Grating (<2 keV)

Slits and grating all have to lie on the Rowland circle for best focusing. Its radius is half the radius of the spherical grating.

At higher photon energies the angle of incidence gets closer to grazing (down to 1 degree).

> Spherical Grating Monochromator

Bragg Reflection (>2 keV)

Bragg's condition for diffraction of X-rays at the lattice planes of a crystal selects a specific wavelength for each incidence angle.

> Double Crystal Monochromator

XAS+XES Endstation at an Undulator Beamline

Photon Detectors

Trade-off between high efficiency in 1) and high energy resolution in 3):

1) Channelplates (+ filter) Large solid angle

2) Silicon drift detector (SDD) Separates core levels

3) Spectrograph (monochromator with multidetection replacing the exit slit)High energy resolution

Electron Spectrometer with Multidetection

Electron Spectrometer with Multidetection

Kepler orbits between the charged spheres.

Larger orbits for faster electrons.

Angles and/or positions mapped along the slits.

 $50 \times 50 = 2500$ Spectra in one scan!

X-ray vs. Optical Absorption Spectroscopy

Data Analysis in XPS and XAS

First step: Use **reference spectra** from model compounds to identify the bonding environment (oxidation state in XPS, orbital assignment in XAS). Compare the photon energy calibrations in XAS (varies significantly).

XPS binding energies:

Physical Electronics (Φ) handbooks of XPS and Auger electron energies: https://www.phi.com/support/reference-material/handbook.html NIST: https://srdata.nist.gov/xps/Default.aspx

XAS/EELS transitions:

J. Stöhr, NEXAFS Spectroscopy, Springer Series in Surface Sciences 25

Molecules: http://unicorn.mcmaster.ca/corex/cedb-title.html

Polymers: J. Phys. Chem. B 106, 8531 (2002); Polymer 49, 643 (2008).

Nitrogen K-edge: J. Synchrotron Rad. 14, 500 (2007).

Transition metal oxides, coordination complexes:

- J. Phys. Condens. Matter **21**, 104207 (2009); (K-edge)
- J. Electron. Spectrosc. Relat. Phenom. 61, 529 (1994); (L-edge)

Data Analysis Assisted by Theory

Semiempirical modeling:

A multiple scattering code for modeling of absorption edges has evolved over a number of years (currently FEFF9):

http://leonardo.phys.washington.edu/feffproject-feff.html

The complex (but highly-informative) multiplet structure of the $2p \rightarrow 3d$ edges in transition metals and rare earths can be modeled by CTM4XAS: http://www.anorg.chem.uu.nl/people/staff/FrankdeGroot/

First principles calculations:

The difficulty increases strongly with the number of quasiparticles involved: XPS and XES involve only a single quasiparticle (if shake-up and plasmon satellites are ignored). They can be handled with standard density functional theory (DFT). XAS/EELS involve an electron-hole pair (exciton) which requires time-dependent DFT (TDDFT) or the Bethe-Salpeter equation. It is possible to get by with simpler calculations with input from other experiments (see the next slide).

Combination of Core and Valence Spectroscopy with Theory

For both optical and core level absorption spectroscopy one needs to take the electron-hole interaction into account (black double-arrows). To avoid complex two-body calculations one can combine a simple \triangle SCF calculation of the ionization energy (IE) and the electron affinity (EA) with XPS, UPS, and XAS data. Following the double-arrows for XAS, XPS, UPS, IE, EA clockwise, the remaining gap for completing a loop is the exciton binding energy.

The energy reference for XPS, UPS is the Fermi level E_F . For XAS (optical absorption) it is the core level (HOMO), and for theory the vacuum level E_{Vac} .

J. Phys. Chem. C 120, 1366 (2016)

Microscopy with Chemical Resolution Using Core Levels

(A. Scholl)

Holography and Ptychography

Nature 432, 885 (2004)

Ptychography = Holography without a Reference Beam

In favorable circumstances it is possible to reconstruct a diffraction pattern without a reference beam. The diffraction pattern is the Fourier transform of the X-rays emitted by the object. Therefore, an inverse Fourier transform should reconstruct the object. The problem is that one measures only the amplitude of the diffraction pattern, not its phase. But for an object located inside a well-defined aperture, one can obtain the phase by iteration:

- 1) Inverse Fourier transform of the diffraction amplitude with arbitrary phase from k-space to r-space.
- 2) Truncation of the amplitude outside the aperture + Fourier transform from r to k.
- 3) Replacement of the amplitude in k-space by the measured diffraction pattern + inverse Fourier transform back to r.
- 4) Return to 2).

Photoelectron Diffraction and Holography

One can also use diffraction from photoelectron rather than photons. Since the electron wavelength is shorter than the photon wavelength, one can reach atomic resolution even with soft X-rays. The spherical wave of photoelectrons emitted directly from a particular atom serves as reference, the waves scattered by neighbor atoms create the object. The analysis is more involved for electrons than for photons, because multiple scattering needs to be included.

This concept will be illustrated in Lecture II, using the Si/SiO_2 interface as example.

Appl. Phys. A 76, 721 (2003)